(+)-JQ1

别名: Bromodomain Inhibitor; (+)-JQ 1; (+)-JQ-1; (+)-JQ1; 1268524-70-4; (+)-JQ1; (+)-JQ-1; JQ1 compound; JQ1; (S)-tert-butyl 2-(4-(4-chlorophenyl)-2,3,9-triMethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)acetate; JQ-1; (S)-JQ1; (+)-JQ1 ; (S)-(+)-2-(4-(4-氯苯基)-2,3,9-三甲基-6H-噻吩并[3,2-f][1,2,4]三唑并[4,3-a][1,4]二氮杂卓-6-基)乙酸叔丁酯; (S)-(+)-叔丁基 2-(4-(4-氯苯基)-2,3,9-三甲基-6H-噻吩并[3,2-f][1,2,4]噻唑并[4,3-a][1,4]二氮杂革-6-基)乙酸酯;(S)-2-(4-(4-氯苯基)-2,3,9-三甲基-6H-噻吩并[3,2-F][1,2,4]三唑并[4,3-A][1,4]二氮杂卓-6-基)乙酸叔丁酯
目录号: V0411 纯度: ≥98%
(+)-JQ1 是一种新型、有效且高度特异性的 BET(布罗莫结构域和额外末端结构域)布罗莫结构域抑制剂,具有抗肿瘤活性。
(+)-JQ1 CAS号: 1268524-70-4
产品类别: Epigenetic Reader Domain
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
1mg
5mg
10mg
25mg
50mg
100mg
250mg
500mg
1g
Other Sizes

Other Forms of (+)-JQ1:

  • (-)-JQ-1
  • (6s)-4-(4-氯苯基)-2,3,9-三甲基-6H-噻吩并[3,2-f][1,2,4]噻唑并[4,3-a][1,4]二氮杂卓-6-乙酸
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
顾客使用InvivoChem 产品(+)-JQ1发表1篇科研文献
纯度/质量控制文件

纯度: ≥98%

纯度: ≥98%

纯度: ≥98%

纯度: ≥98%

纯度: ≥98%

纯度: ≥98%

产品描述
(+)-JQ1 是一种新型、有效且高度特异性的 BET(布罗莫结构域和额外末端结构域)布罗莫结构域抑制剂,具有抗肿瘤活性。在酶测定中,它抑制 BRD4(1/2),IC50 分别为 77 nM 和 33 nM。它对 BET 具有高度特异性,因为它仅与 BET 家族的溴结构域结合,而不与非 BET 家族的任何溴结构域结合。 (+)-JQ1对MM(多发性骨髓瘤)、胰腺导管腺癌、卵巢癌等多种癌症具有潜在的抗肿瘤活性。其作用机制是抑制c-MYC并上调p21。 (+)-JQ1 已被用作化学探针来研究 BET 溴结构域在肿瘤发生转录调控中的作用。
生物活性&实验参考方法
靶点
BRD4 (1/2) (IC50= 77/33 nM)
体外研究 (In Vitro)
(+)-JQ-1 是 Bromodomain BET 家族的一种强效、高选择性和 Kac 竞争性抑制剂。 (+)-JQ-1(100 nM,48 小时)可促进鳞状细胞发育,细胞纺锤体形成、变平和角蛋白表达增强即可证明这一点。通过定量免疫组织化学评估,与 (-)-JQ1 (250 nM) 和载体对照相比,(+)-JQ-1 (250 nM) 刺激处理的 NMC 797 细胞中角蛋白的快速表达。 (+)-JQ-1(相对于 (-)-JQ1 (250 nM))在处理的 NMC 797 细胞中引起时间依赖性强 (3+) 角蛋白染色 [1]。添加 (+)-JQ-1 后几乎立即观察到自噬基因的去抑制[2]。 (+)-JQ-1 是 BET 家族共激活蛋白 BRD4 的强效噻吩二氮卓抑制剂 (Kd=90 nM),该蛋白通过 MYC 癌基因的转录调节参与癌症的发展。 (+)-JQ-1 的剂量范围实验表明可有效抑制 H4Kac4 结合,小鼠 BRDT (1) 的 IC50 值为 10 nM,人 BRDT (1) 的 IC50 值为 11 nM [3]。
体内研究 (In Vivo)
将与已形成肿瘤相匹配的小鼠队列随机每天接受载体或 (+)-JQ1 (50 mg/kg) 腹膜内注射。 FDG-PET 成像用于在治疗后四天和随机分组之前评估小鼠。当施用 (+)-JQ1 时,FDG 摄取显着减少。肿瘤体积的评估表明,JQ1 治疗抑制了肿瘤生长。 CD1 小鼠用于口服和静脉给药后 (+)-JQ1 的药代动力学研究。静脉注射(5 mg/kg)后(+)-JQ1 平均血浆浓度的时间曲线。静脉注射(+)-JQ1的半衰期(T1/2)约为1小时,其药代动力学特征显示出良好的药物暴露(AUC=2090 hr*ng/mL)。口服剂量(10 mg/kg)后,创建了 (+)-JQ1 的平均血浆浓度-时间曲线。口服(+)-JQ1药代动力学参数显示出良好的药物暴露(AUC=2090 hr*ng/mL)、血浆峰浓度(Cmax=1180 ng/mL)和口服生物利用度(F=49%)[1]。
酶活实验
乙酰组蛋白结合测定。[1]
如前所述51进行分析,对制造商的方案(PerkinElmer,USA)稍作修改。将所有试剂在补充有0.05%CHAPS的50mM HEPES、100mM NaCl、0.1%BSA、pH 7.4中稀释,并在加入平板之前使其平衡至室温。在150–0μM的范围内制备配体的24点1:2系列稀释液,并将4μl转移到低体积384孔板中,然后加入4μl His标记蛋白(BRD4(1),250 nM,BRD4(2)和CREBBP,2000 nM)。将板密封并在室温下孵育30分钟,然后将4μl等摩尔浓度的生物素化肽添加到蛋白质中[BRD4(1)和BRD4(2)的肽:H4K5acK8acK12acK16ac,HSGRGK(Ac)GGK(Ac。在弱光条件下加入4μl链霉亲和素包被的供体珠(25μg/ml)和4μl镍螯合受体珠(25µg/ml)之前,将板密封并再孵育30分钟。将板箔密封以避光,在室温下孵育60分钟,并使用AlphaScreen 680激发/570发射滤光片组在PHERAstar FS板读取器上读取。对照相应的DMSO对照标准化后,在Prism 5(GraphPad Software,USA)中计算IC50值,并作为20μl反应体积中化合物的最终浓度给出。
细胞实验
细胞增殖测定。[1]
将细胞接种到白色384孔微量滴定板(Nunc)中,在总体积为50μl的培养基中,每孔500个细胞。797、TT和TE10细胞生长在含有1%青霉素/链霉素和10%FBS的DMEM中。Per403细胞生长在含1%青霉素/链霉菌和20%FBS的DMEM中。患者来源的NMC 11060细胞生长在具有10%FBS和1%青霉素/链球菌素的RPMI中。通过机器人销钉转移(PerkinElmer JANUS配备有V&P Scientific 100 nl销钉工具)将化合物递送至微量滴定分析板。在37ºC下孵育48小时后,裂解细胞,并使用商业增殖测定法评估孔的总ATP含量。根据剂量分析重复测量,并通过逻辑回归计算IC50的估计值。[1]

细胞生长测定。[1]
将细胞以每孔1.5×104个细胞的浓度接种在6孔组织培养皿中。细胞在2ml DMEM(797)或RPMI(11060)中生长,所述DMEM或RPMI含有10%胎牛血清、1%青霉素/链霉素和250nM(+)-JQ1或等效体积的DMSO(0.025%)。每天更换每口井中一半的介质。在第0天、第1天、第3天、第7天和第10天,将分配给每个时间点的细胞培养皿进行胰蛋白酶消化,以1:1的比例与0.4%台盼蓝混合,并使用Countess自动细胞计数器计数。
动物实验
Xenograft Efficacy Studies.[1]
NMC 797 xenografts were established by injecting NMC 797 cells (107) in 30 % Matrigel (BD Biosciences) into the flank of 6 week-old female NCr nude mice. Twelve days after injection, mice with measureable tumors were divided into cohorts to be treated with JQ1 at 50 mg kg-1 IP or vehicle (5 % DMSO in 5 % dextrose). For FDG-PET studies, mice with established tumors measuring approximately 1 cm in the largest linear dimension underwent baseline CT/PET imaging 1 h after injection of 250 μCi of FDG (Pre-treatment). Mice were then treated with four daily doses of 50 mg kg-1 of racemic JQ1 by intraperitoneal injection. Two hours after the fourth dose of JQ1 or vehicle, mice underwent repeat FDG-PET imaging (Post-treatment). The integrated signal encompassed within the entire tumor volume is expressed as the percent of injected dose per gram (% ID/gm). Tumors were fixed in 10 % buffered formalin for histopathological analysis. For tumor caliper studies, the average size of tumors in the JQ1 treatment group (n = 8) and vehicle group (n = 7) were similar (63.8 ± 17.1 and 73.6 ± 14.4 mm3 respectively) at the start of treatment. Animals were followed daily for clinical symptoms. Tumor measurements were assessed by caliper measurements, and volume calculated using the formula Vol = 0.5 x L x W2. After 2 weeks of treatment, all mice were humanely euthanized, and tumors were fixed in 10 % formalin for histopathological examination. Statistical significance of tumor volumes was calculated by two-sided Students t-test.[1]

Primary NMC Xenograft Studies.[1]
A primary xenograft model of NMC was established by injecting NCr nude mice with primary cells (107 cells in 100 μl of 30 % Matrigel in 70 % PBS) collected from malignant pleural fluid obtained with IRB approval and informed consent from a patient at the Dana-Farber Cancer Institute and Brigham & Women’s Hospital. As above, four mice with established tumors measuring approximately 1 cm in the largest linear dimension underwent baseline CT/PET imaging 1 h after injection of 250 μCi of FDG (Pre-treatment). Mice were then treated with four daily doses of 50 mg kg-1 of (+)-JQ1 by intraperitoneal injection. Animals were followed daily for clinical symptoms. Two hours after the fourth dose of (+)-JQ1 or vehicle, mice underwent repeat FDG-PET imaging (Post-treatment). The integrated signal encompassed within the entire tumor volume is expressed as the percent of injected dose per gram (%ID/gm). Tumors were fixed in 10 % buffered formalin for histopathological analysis. At the conclusion of the study, all mice were humanely euthanized, and tumors were fixed in 10 % formalin for histopathological examination. Survival (30 days) studies performed with NMC Per403 and 11060 xenografts were initiated as above. For these studies, (+)-JQ1 was administered at a dose of 50 mg kg-1 by daily intraperitoneal injection. The average size of tumors in the (+)-JQ1 treatment group (n = 10) and vehicle group (n = 10) were similar at the start of treatment. Animals were followed daily for clinical symptoms. Tumor measurements were assessed by caliper measurements, and volume calculated using the formula Vol = 0.5xLxW2. Statistical significance of tumor volumes was calculated by two-sided Students t-test. Comparative survival analysis was performed using the Log-rank (Mantel-Cox) Test, and data were presented as a Kaplain-Meier plot annotated with a measure of statistical significance (pvalue). All animal studies were approved by the IACUC of the DFCI.

Pharmacokinetic Studies in Mice.[1]
Male CD1 mice (24 – 29 gm) were treated with a single dose of (+)-JQ1 at 5 mg kg-1 for intravenous tail vein injection studies and 10 mg kg-1 for oral gavage studies. Approximately 150 μl of blood were taken from animals by retro-orbital puncture under anesthesia with Isoflurane into EDTA tubes at pre-specified time intervals: 0.033, 0.083, 0.25, 0.5, 1, 2, 4, 5, 8 and 24 hours. Three animals were analyzed per time point. Blood samples were put on ice and centrifuged to obtain plasma samples (2000 x.g, 5 min under 4 °C) within 15 minutes post-sampling. Plasma samples were stored at approximately -70 °C until analysis was performed. Mice were provided free access to food and water throughout the study. Compound was formulated for intravenous injection in 10 % DMSO and 10 % HP-β-CD. Pharmcokinetic studies and pharmacologic assay development was performed at ChemPartner (Shanghai, CHINA). Data were analyzed by J.E.B. using Microsoft Excel and GraphPad Prism 5.02.

In vivo formulations used (reported):
1. Dissolved in 5% dextrose; 50 mg/kg; i.p. injection; Nature. 2010 Dec 23;468(7327):1067-73;
2. Dissolved in 10% DMSO and 90% of a 10% 2-hydroxypropyl-β-cyclodextrin solution; Leukemia. 2017 Oct;31(10):2037-2047.;
3. Dissolved in 1% DMSO+5% Glucose+ddH2O; Cell. 2018 Sep 20;175(1):186-199.e19.;
4. Dissolved in 20% hydroxypropyl-β-cyclodextrin, 5% DMSO, 0.2% Tween-80 in saline; Mol Cancer Ther. 2016 Jun;15(6):1217-26.;
5. Dissolved in 1:1 propylene glycol:water; J Biol Chem. 2016 Nov 4;291(45):23756-23768.;
6. Dissolved in 5% DMSO in 10% 2-hydroxypropyl-β-cyclodextrin solution; Cancer Lett. 2017 Aug 28;402:100-109.
参考文献

[1]. Selective inhibition of BET bromodomains. Nature. 2010 Dec 23;468(7327):1067-73.

[2]. Bromodomain Protein BRD4 Is a Transcriptional Repressor of Autophagy and LysosomalFunction. Mol Cell. 2017 May 18;66(4):517-532.e9.

[3]. Small-molecule inhibition of BRDT for male contraception. Cell. 2012 Aug 17;150(4):673-84.

其他信息
JQ1 is a member of the class of thienotriazolodiazepines that is the tert-butyl ester of [(6S)-4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl]acetic acid. An inhibitor of bromodomain-containing protein 4 that exhibits anti-cancer and cardioprotective properties. It has a role as a bromodomain-containing protein 4 inhibitor, a cardioprotective agent, an antineoplastic agent, an anti-inflammatory agent, an angiogenesis inhibitor, an apoptosis inducer and a ferroptosis inducer. It is a thienotriazolodiazepine, an organochlorine compound, a carboxylic ester and a tert-butyl ester.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C23H25CLN4O2S
分子量
456.99
精确质量
456.138
元素分析
C, 60.45; H, 5.51; Cl, 7.76; N, 12.26; O, 7.00; S, 7.02
CAS号
1268524-70-4
相关CAS号
(R)-(-)-JQ1 Enantiomer;1268524-71-5;JQ-1 (carboxylic acid);202592-23-2
PubChem CID
46907787
外观&性状
White to yellow solid
密度
1.3±0.1 g/cm3
沸点
610.4±65.0 °C at 760 mmHg
闪点
322.9±34.3 °C
蒸汽压
0.0±1.7 mmHg at 25°C
折射率
1.657
LogP
4.49
tPSA
97.61
氢键供体(HBD)数目
0
氢键受体(HBA)数目
6
可旋转键数目(RBC)
5
重原子数目
31
分子复杂度/Complexity
706
定义原子立体中心数目
1
SMILES
ClC1C([H])=C([H])C(=C([H])C=1[H])C1C2C(C([H])([H])[H])=C(C([H])([H])[H])SC=2N2C(C([H])([H])[H])=NN=C2[C@]([H])(C([H])([H])C(=O)OC(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H])N=1
InChi Key
DNVXATUJJDPFDM-KRWDZBQOSA-N
InChi Code
InChI=1S/C23H25ClN4O2S/c1-12-13(2)31-22-19(12)20(15-7-9-16(24)10-8-15)25-17(11-18(29)30-23(4,5)6)21-27-26-14(3)28(21)22/h7-10,17H,11H2,1-6H3/t17-/m0/s1
化学名
tert-butyl (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl) acetate
别名
Bromodomain Inhibitor; (+)-JQ 1; (+)-JQ-1; (+)-JQ1; 1268524-70-4; (+)-JQ1; (+)-JQ-1; JQ1 compound; JQ1; (S)-tert-butyl 2-(4-(4-chlorophenyl)-2,3,9-triMethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)acetate; JQ-1; (S)-JQ1;
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: 91 mg/mL (199.1 mM)
Water:<1 mg/mL
Ethanol:91 mg/mL (199.1 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (5.47 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.5 mg/mL (5.47 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.5 mg/mL (5.47 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液添加到 900 μL 玉米油中并混合均匀。


配方 4 中的溶解度: 2% DMSO+30% PEG 300+5% Tween 80+ddH2O:5mg/mL

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.1882 mL 10.9412 mL 21.8823 mL
5 mM 0.4376 mL 2.1882 mL 4.3765 mL
10 mM 0.2188 mL 1.0941 mL 2.1882 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

生物数据图片
  • (+)-JQ1

    Leukemia and lymphoma cell lines are broadly sensitive to BET-bromodomain inhibition.2011 Oct 4;108(40):16669-74.

  • (+)-JQ1

    Gene expression profiling of LP-1 and Raji cells treated with active or inactive BET inhibitors.2011 Oct 4;108(40):16669-74.

  • (+)-JQ1

    Small molecule BET-bromodomain inhibition suppressesMYCtranscription.2011 Oct 4;108(40):16669-74.

  • (+)-JQ1

    MYC reconstitution significantly protects cells from BET-mediated effects.2011 Oct 4;108(40):16669-74.

  • (+)-JQ1

    BET-bromodomain inhibition decreases tumor load in vivo.2011 Oct 4;108(40):16669-74.

  • (+)-JQ1

    Integrated genomic rationale for BET bromodomains as therapeutic targets in MM.2011 Sep 16;146(6):904-17.

  • (+)-JQ1

    Inhibition of Myc-dependent transcription by theJQ1BET bromodomain inhibitor.2011 Sep 16;146(6):904-17.

  • (+)-JQ1

    BET inhibition suppressesMYCtranscription in MM.2011 Sep 16;146(6):904-17.

  • (+)-JQ1

    Regulation ofMYCtranscription by BET bromodomains.2011 Sep 16;146(6):904-17.

  • (+)-JQ1

    Anti-myeloma activity ofJQ1in vitro.2011 Sep 16;146(6):904-17.

  • (+)-JQ1

    JQ1induces cell cycle arrest and cellular senescence in MM cells.2011 Sep 16;146(6):904-17.

  • (+)-JQ1

    Translational implications of BET bromodomain inhibition in MM.2011 Sep 16;146(6):904-17.

  • (+)-JQ1

  • (+)-JQ1
  • (+)-JQ1
相关产品
联系我们